Por Carlos Miranda, CT4BB (www.carlosmiranda.net)

Parte V

BB_TRACKER Comando de rotores TV para seguimento de satélites

INSTALAÇÃO E OPERAÇÃO

Para os colegas que queiram iniciar neste momento o acompanhamento deste projecto, informamos que foram publicados quatro artigos desde Dezembro de 2012, onde abordamos a filosofia e o princípio de funcionamento deste sistema . O artigo deste número da QSP, por si só, não fará muito sentido se não foram acompanhados os anteriores, pelo que recomendamos as suas leituras.

Embora consideremos artigos demasiadamente descritivos, a nossa intenção tem sido permitir esclarecer bem os pormenores quando for efectuada uma posterior e mais atenta leitura.

Neste artigo explicamos a:

- 1 Instalação do Driver
- 2 Montagem dos rotores
- 3 Operação do sistema.
- 4 Correcção do rotor das elevações

O Instalação do Driver

O Driver, como já referimos, é um programa que vai extrair periodicamente do Orbitron, os azimutes e as elevações para os enviar para o microcontrolador da Placa mãe.

Depois de fazer o "Download" do Driver da Internet, faça a instalação clicando duas vezes no ícone da instalação. O Instalador vai criar uma directoria para o instalar em:

BB_TRACKER=C:\Programas\CT4BB\BB_ TRACKER v4.6\BB_TRACKER.exe

Seguidamente, aceda à directoria do Orbitron em C:\Programas\Orbitron e, abrindo sequencialmente as pastas, encontrará a pasta **Config** relativa à configuração do Orbitron. Abra-a e aparecerá o ficheiro SetUp que deve também ser aberto clicando duas vezes. O Editor de Texto mostrará as seguintes linhas:

[Tips] RedNeg=0 BoldLines=0 [System] Version=3.71 LastMsg=52 DontRemindVer= Sort=0 FullScreen=0 JumpM=6 JumpU=0 DDEdriver=BB TRACKER Language=Portugues (Portuguese) EUR SpcTrkUser= SpcTrkPass= SpcTrkRemember=1 [General] ECIdec=0 GEOdec=0 AutoUTC=1 UTC=0 DateFormat=0 DateSeparator=0 FullInteactive=1 AutoOMBS=1 SaveOnExit=1 ExitConfirmation=0 RadarRotation=0 InvertRadar=0 [Drivers] **WispDDE**

PlanetSourceDDE=C:\WINDOWS\Desktop\ Project1.exe

BB_TRACKER=C:\Programas\CT4BB\ BB TRACKER v4.6\BB TRACKER.exe

```
[Extra]
TLEUpdateConfirmation=1
SaveMapEx=1
SaveGUIEx=1
AutoSatOnTrk=1
```

Na secção [Drivers], escreva a linha com o seguinte percurso:

"BB_TRACKER=C:\Programas\CT4BB\ BB_TRACKER v4.6\BB_TRACKER.exe".

Guarde a configuração, abrindo o menu Ficheiro do Editor de texto e faça Guardar.

Depois, abra o programa Orbitron e, no separador Rotor/Rádio, na janela Driver, encontrará lá o BB_TRACKER instalado como mostra a Figura 1.

Actue o botão do driver para o abrir e aparecer o painel mostrado na Figura 7.

fêmea DB15 do equipamento e às duas fichas macho multipino nas outras pontas. Esta fichas conectar-se-ão às respectivas fichas fêmea coladas nos rotores.

Instalamos finalmente os rotores no suporte. Se o sistema for utilizado em móvel, como o nosso, pode ver a montagem nas Figuras 3,4,5 e 6 onde usámos um tripé de um estendal de roupa adquirido no Lery Merlin sendo que, também pode utilizar um suporte de um guarda-sol de jardim, apertando o rotor dos azimutes no tubo da base.

A orientação do rotor dos azimutes pode ser qualquer uma, porque se cortaram os pinos de travamento internos como explicámos anteriormente.

A orientação da montagem do rotor das elevações deve ser como se mostra a Figura 2 e 4 ou seja, com a caixa virada para o lado esquerdo, quando olhamos para rotor pelo lado de cima do seu eixo rotativo.

					2012-01-29	0:29:17 (010 +0:00)
	JAS-18 ([F0-20)				1
Azimute	Captação/MHz Recep/Doppler	Banda Recep.			Click in t	his button to run
Elevação	Difusão/MHz Transm/Doppler	Banda Emiss.	Objecto			(
-58.1	145.850000 ▼ 145.851270	_	Satélite	<u> </u>		

[**Figura 1** – Janela Rotor/Rádio com o Driver seleccionado.]

2 Montagem dos rotores

Montadas as placas de circuito impresso, os cinco cabos planos e a fonte de alimentação na caixa metálica da nossa unidade, estabelecemos a ligação ao PC com um cabo USB (A-B) que deve ser curto e blindado para não termos erros de leitura provocados pela RF. Soldamos depois o cabo UTP duplo de comando à ficha O aperto do rotor das elevações no mastro, foi feito com os grampos de fixação do próprio rotor, em que fizemos uma furação adicional mais separada, permitindo assim fixá-lo horizontalmente como mostra a Figura 5.

Esta orientação permite que a elevação de 90° coincida com o batente interno do rotor que não cortámos.

Na figura 2 mostra-se esquematicamente o rotor rodado para a elevação de 90° travado pelo batente interno.

[Figura 2 – Vista de cima do rotor das elevações na posição 90° a montar no mastro.]

[Figura 3 – Colocando o rotor dos azimutes sem qualquer orientação.]

B Operação do sistema

Funções do painel

Depois de activar o driver no separador Rotor/ Rádio do Orbitron, aparece o painel da Figura 7.

[Figura 4 – Colocação do rotor das elevações.]

[**Figura 5** – Aperto do rotor das elevações ao mastro.]

[**Figura 6** – O Rotor dos azimutes fica preso entre as hastes do suporte.]

O Driver tem dois modos de operação: o Modo Automático e o Modo Manual.

↘ No Modo Automático, o Driver vai buscar ao Orbitron as coordenadas do satélite que seleccionamos e envia-as para o microcontrolador. Esta acção processa-se continuamente ao activar o botão Start/Stop.

▶ No *Modo Manual*, podem-se orientar as antenas para os azimutes e elevações que entendermos, inserindo os valores nas respectivas janelas. O modo manual só está activo quando o modo automático estiver desactivado e vice--versa.

Sempre que se inicia o Driver, o botão de sincronismo aparece em cor de laranja, para permitir calibrar os rotores no ponto de Azimute e Elevação Zero. Assim, activando o botão **SYNC**, os rotores iniciam movimentos para se posicionarem nos pontos fixos referenciais que são os zeros do sistema. Depois, orienta-se toda a estrutura de suporte fisicamente e geograficamente, fazendo com que os zeros encontrados pelos rotores coincidam com o azimute zero e com a elevação zero.

Após terminar a busca de zeros, o botão SYNC passa a cinzento e fica inactivo. Verificar-se-á

só o software desenrolará através de cálculos comparativos.

A janela **Azim.Comp.** informa, através da sua coloração, o estado da compensação de voltas do rotor dos azimutes. Em azul, indica que as rotações ainda não enrolaram o cabo uma volta no mastro. Em Laranja, avisa que está completa uma volta em trono do mastro e que se iniciará o desenrolamento numa próxima leitura. Em Verde, a janela indica que o rotor está em desenrolamento "Unrolling" com uma de rotação inversa de 360º mas, caminhando para o azimute indicado.

Esta operação acontece quer no modo manual quer no automático.

As legendas em baixo do painel informam sobre o movimento dos rotores (Travelling, Stopped ou Last Position).

O número dos Sectores caminhados pelo rotor dos azimutes em sentido contrário aos ponteiros do relógio (CCW) ou no sentido dos ponteiros (CW), vão sendo indicados no painel para monitorizar a movimentação do rotor. Assim, se por exemplo CCW-CW> 60 significa que a antena já andou uma volta completa (60 sectores) no sentido contrário aos ponteiros do relógio. Estará prestes a efectuar um movimento inverso de compensação e desenrolamento de cabos.

também nesta altura, se os cabos de comando e os cabos coaxiais estão enrolados em volta do mastro que devem ser desenrolados manualmente. Fica assim concluída a instalação e calibragem do sistema.

Normalmente a operação de desenrolamento dos cabos, far-se-á apenas quando se instala o sistema pela primeira vez em qualquer local, porque por si

			ON driver for DO	TOD 8747/40202	
ľ	Satellite name a	nd String:	CT4BB		
	Automatic Start	Azimuth	Elevation	Azim. Comp.	
	Manual Start	Azimuth	Elevation	SYNC	
,A E	kz.Travelling: I.Travelling:		Sectors:	cw ccw	

[Figura 7 – Aspecto do Driver.]

Sempre que se faz um sincronismo, o sistema desenrola – se for o caso – e calibra ao azimute zero e elevação zero passando também as leituras de CW e CCW a zeros.

Outras características

➡ Depois de desligar o PC, os dados relativos à posição da antena são guardados no disco rigido dentro do Windows. Ao entrar no programa mais tarde, a informação do azimute e da elevação da ultima orientação estará presente na memória. Se nada foi forçado fisicamente na posição dos rotores, os valores da memória corresponderão à orientação real da antena.

▶ No caso dos valores da orientação registados na memória não corresponderem à orientação real da antena, indicia que algo foi forçado. Para corrigir, bastará activar o botão SINC para reposicionar a antena no azimute e na elevação zero e, eventualmente, rectificar o enrolamento dos cabos em torno do mastro.

Se, por qualquer circunstância, o rotor das elevações foi severamente alterado para fora do seu único quadrante de 0-90 graus, proceder-se-á à seguinte correcção:

4 Correcção do rotor das elevações

 Arregace a gola de borracha vedante onde se foi colado o ressalto que actua o microswitch, para evitar que ele o actue durante esta operação.

2 – Insira na janela Manual do Driver o valor 0º para o azimute e 90º para a elevação e actue o Start manual. O rotor dos azimutes movimentar-se-á para zero mas não se preocupe com ele.

Verifique o rotor das elevações a movimentarse na direcção CW até parar.

3 – Agora, insira nas mesmas janelas de Manual o valor 0º para o azimute e 0º para a elevação. Prima o pino do microswitch do rotor das elevações e faça Start no Driver.

Esta acção no microswitch, evita que o rotor se movimente para trás em CCW permanecendo parado enquanto que o motor do controlador roda.

Assim que o controlador parar, volte a repetir os pontos 2 e 3.

Com esta sequência de repetições que serão no máximo de quatro, o rotor das elevações será trazido para o seu quadrante entre 0° e 90°. Bastará depois baixar a gola vedante, fazer o sincronismo e ajustar o aperto da antena a essas posições.

Um processo mais fácil mas que exige algum esforço, é movendo o rotor das elevações à mão, forçando-o a rodar no sentido dos ponteiros do relógio (CW) até ao batente dos 90°.

Notas:

A posição do rotor dos azimutes na estrutura de suporte pode ser qualquer uma, porque o local onde se instalou o microswitch é que definirá o azimute zero.

▲ A colagem dos microswitch nos rotores pode ser realizada em qualquer ponto em torno deles.

> No próximo número de Julho, na Parte VI, daremos mais orientações para as montagens e concluiremos a apresentação deste projecto.

